怎么定位哪些SQL产生了大量的Redo日志
本篇内容介绍了“怎么定位哪些SQL产生了大量的Redo日志”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
创新互联公司专注于鄂托克网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供鄂托克营销型网站建设,鄂托克网站制作、鄂托克网页设计、鄂托克网站官网定制、成都小程序开发服务,打造鄂托克网络公司原创品牌,更为您提供鄂托克网站排名全网营销落地服务。
首先,我们需要定位、判断那个时间段的日志突然暴增了,注意,有些时间段生成了大量的redo log是正常业务行为,有可能每天这个时间段都有大量归档日志生成,例如,有大量作业在这个时间段集中运行。而要分析突然、异常的大量redo log生成情况,就必须有数据分析对比,找到redo log大量产生的时间段,缩小分析的范围是第一步。合理的缩小范围能够方便快速准确定位问题SQL。下面SQL语句分别统计了redo log的切换次数的相关数据指标。这个可以间接判断那个时间段产生了大量归档日志。
/******统计每天redo log的切换次数汇总,以及与平均次数的对比*****/ WITH T AS ( SELECT TO_CHAR(FIRST_TIME, 'YYYY-MM-DD') AS LOG_GEN_DAY, TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME, 'YYYY-MM-DD'), TO_CHAR(FIRST_TIME, 'YYYY-MM-DD'), 1, 0)) , '999') AS "LOG_SWITCH_NUM" FROM V$LOG_HISTORY WHERE FIRST_TIME < TRUNC(SYSDATE) --排除当前这一天 GROUP BY TO_CHAR(FIRST_TIME, 'YYYY-MM-DD') ) SELECT T.LOG_GEN_DAY , T.LOG_SWITCH_NUM , M.AVG_LOG_SWITCH_NUM , (T.LOG_SWITCH_NUM-M.AVG_LOG_SWITCH_NUM) AS DIFF_SWITCH_NUM FROM T CROSS JOIN ( SELECT TO_CHAR(AVG(T.LOG_SWITCH_NUM),'999') AS AVG_LOG_SWITCH_NUM FROM T ) M ORDER BY T.LOG_GEN_DAY DESC; SELECT TO_CHAR(FIRST_TIME,'YYYY-MM-DD') DAY, TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'00',1,0)),'999') "00", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'01',1,0)),'999') "01", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'02',1,0)),'999') "02", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'03',1,0)),'999') "03", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'04',1,0)),'999') "04", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'05',1,0)),'999') "05", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'06',1,0)),'999') "06", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'07',1,0)),'999') "07", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'08',1,0)),'999') "08", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'09',1,0)),'999') "09", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'10',1,0)),'999') "10", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'11',1,0)),'999') "11", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'12',1,0)),'999') "12", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'13',1,0)),'999') "13", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'14',1,0)),'999') "14", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'15',1,0)),'999') "15", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'16',1,0)),'999') "16", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'17',1,0)),'999') "17", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'18',1,0)),'999') "18", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'19',1,0)),'999') "19", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'20',1,0)),'999') "20", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'21',1,0)),'999') "21", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'22',1,0)),'999') "22", TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'23',1,0)),'999') "23" FROM V$LOG_HISTORY GROUP BY TO_CHAR(FIRST_TIME,'YYYY-MM-DD') ORDER BY 1 DESC;
如下案例所示,2018-03-26日有一个归档日志暴增的情况,我们可以横向、纵向对比分析,然后判定在17点到18点这段时间出现异常,这个时间段与往常对比,生成了大量的redo log。
这里分享一个非常不错的分析redo log 历史信息的SQL
------------------------------------------------------------------------------------------------ REM Author: Riyaj Shamsudeen @OraInternals, LLC REM www.orainternals.com REM REM Functionality: This script is to print redo size rates in a RAC claster REM ************** REM REM Source : AWR tables REM REM Exectution type: Execute from sqlplus or any other tool. REM REM Parameters: No parameters. Uses Last snapshot and the one prior snap REM No implied or explicit warranty REM REM Please send me an email to rshamsud@orainternals.com, if you enhance this script :-) REM This is a open Source code and it is free to use and modify. REM Version 1.20 REM ------------------------------------------------------------------------------------------------ set colsep '|' set lines 220 alter session set nls_date_format='YYYY-MM-DD HH24:MI'; set pagesize 10000 with redo_data as ( SELECT instance_number, to_date(to_char(redo_date,'DD-MON-YY-HH24:MI'), 'DD-MON-YY-HH24:MI') redo_dt, trunc(redo_size/(1024 * 1024),2) redo_size_mb FROM ( SELECT dbid, instance_number, redo_date, redo_size , startup_time FROM ( SELECT sysst.dbid,sysst.instance_number, begin_interval_time redo_date, startup_time, VALUE - lag (VALUE) OVER ( PARTITION BY sysst.dbid, sysst.instance_number, startup_time ORDER BY begin_interval_time ,sysst.instance_number ) redo_size FROM sys.wrh$_sysstat sysst , DBA_HIST_SNAPSHOT snaps WHERE sysst.stat_id = ( SELECT stat_id FROM sys.wrh$_stat_name WHERE stat_name='redo size' ) AND snaps.snap_id = sysst.snap_id AND snaps.dbid =sysst.dbid AND sysst.instance_number = snaps.instance_number AND snaps.begin_interval_time> sysdate-30 ORDER BY snaps.snap_id ) ) ) select instance_number, redo_dt, redo_size_mb, sum (redo_size_mb) over (partition by trunc(redo_dt)) total_daily, trunc(sum (redo_size_mb) over (partition by trunc(redo_dt))/24,2) hourly_rate from redo_Data order by redo_dt, instance_number /
分析到这个阶段,我们还只获取了那个时间段归档日志异常(归档日志暴增),那么要如何定位到相关的SQL语句呢?我们可以用下面SQL来定位:在这个时间段,哪些对象有大量数据块变化情况。如下所示,这两个对象(当然,对象有可能是表或索引,这个案例中,这两个对象其实是同一个表和其主键索引)有大量的数据块修改情况。基本上我们可以判断是涉及这个对象的DML语句生成了大量的redo log, 当然有可能有些场景会比较复杂,不是那么容易定位。
SELECT TO_CHAR(BEGIN_INTERVAL_TIME, 'YYYY-MM-DD HH24') SNAP_TIME, DHSO.OBJECT_NAME, SUM(DB_BLOCK_CHANGES_DELTA) BLOCK_CHANGED FROM DBA_HIST_SEG_STAT DHSS, DBA_HIST_SEG_STAT_OBJ DHSO, DBA_HIST_SNAPSHOT DHS WHERE DHS.SNAP_ID = DHSS.SNAP_ID AND DHS.INSTANCE_NUMBER = DHSS.INSTANCE_NUMBER AND DHSS.OBJ# = DHSO.OBJ# AND DHSS.DATAOBJ# = DHSO.DATAOBJ# AND BEGIN_INTERVAL_TIME BETWEEN TO_DATE('2018-03-26 17:00', 'YYYY-MM-DD HH24:MI') AND TO_DATE('2018-03-26 18:00', 'YYYY-MM-DD HH24:MI') GROUP BY TO_CHAR(BEGIN_INTERVAL_TIME, 'YYYY-MM-DD HH24'), DHSO.OBJECT_NAME HAVING SUM(DB_BLOCK_CHANGES_DELTA) > 0 ORDER BY SUM(DB_BLOCK_CHANGES_DELTA) DESC;
此时,我们可以生成这个时间段的AWR报告,那些产生大量redo log的SQL一般是来自TOP Gets、TOP Execution中某个DML SQL语句或一些DML SQL语句,结合上面SQL定位到的对象和下面相关SQL语句,基本上就可以判断就是下面这两个SQL产生了大量的redo log。(第一个SQL是调用包,包里面有对这个表做大量的DELETE、INSERT操作)
如果你此时还不能完全断定,也可以使用下面SQL来辅佐判断那些SQL生成了大量的redo log。在这个案例中, 上面AWR报告中发现的SQL语句和下面SQL捕获的SQL基本一致。那么可以进一步佐证。
注意,该SQL语句执行较慢,执行时需要修改相关条件:时间和具体段对象。
SELECT TO_CHAR(BEGIN_INTERVAL_TIME,'YYYY_MM_DD HH24') WHEN, DBMS_LOB.SUBSTR(SQL_TEXT,4000,1) SQL, DHSS.INSTANCE_NUMBER INST_ID, DHSS.SQL_ID, EXECUTIONS_DELTA EXEC_DELTA, ROWS_PROCESSED_DELTA ROWS_PROC_DELTA FROM DBA_HIST_SQLSTAT DHSS, DBA_HIST_SNAPSHOT DHS, DBA_HIST_SQLTEXT DHST WHERE UPPER(DHST.SQL_TEXT) LIKE '%%' --此处用具体的段对象替换 AND LTRIM(UPPER(DHST.SQL_TEXT)) NOT LIKE 'SELECT%' AND DHSS.SNAP_ID=DHS.SNAP_ID AND DHSS.INSTANCE_NUMBER=DHS.INSTANCE_NUMBER AND DHSS.SQL_ID=DHST.SQL_ID AND BEGIN_INTERVAL_TIME BETWEEN TO_DATE('2018-03-26 17:00','YYYY-MM-DD HH24:MI') AND TO_DATE('2018-03-26 18:00','YYYY-MM-DD HH24:MI')
其实上面分析已经基本完全定位到SQL语句,剩下的就是和开发人员或Support人员沟通、了解是正常业务逻辑变更还是异常行为。如果需要进一步挖掘深入,我们可以使用日志挖掘工具Log Miner深入分析。在此不做展开分析。其实个人在判断分析时生成了正常时段和出现问题时段的AWR对比报告(WORKLOAD REPOSITORY COMPARE PERIOD REPORT),如下所示,其中一些信息也可以供分析、对比参考。可以为复杂场景做对比分析(因为复杂场景,仅仅通过最上面的AWR报告可能无法准确定位SQL)
此次截图,没有截取相关SQL,其实就是最上面分析的SQL语句,如果复杂场景下,非常有用。
“怎么定位哪些SQL产生了大量的Redo日志”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
名称栏目:怎么定位哪些SQL产生了大量的Redo日志
标题链接:http://pwwzsj.com/article/pgcodg.html