tf.reduce_sumtensorflow维度上操作的示例分析-创新互联

这篇文章将为大家详细讲解有关tf.reduce_sum tensorflow维度上操作的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

成都创新互联主营纳溪网站建设的网络公司,主营网站建设方案,重庆APP开发,纳溪h5重庆小程序开发搭建,纳溪网站营销推广欢迎纳溪等地区企业咨询

tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明。官方给的api

reduce_sum(
 input_tensor,
 axis=None,
 keep_dims=False,
 name=None,
 reduction_indices=None
)

input_tensor:表示输入

axis:表示在那个维度进行sum操作。

keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度。

reduction_indices:为了跟旧版本的兼容,现在已经不使用了。

官方的例子:

# 'x' is [[1, 1, 1]
#   [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

自己做的例子:

import tensorflow as tf
import numpy as np
x = np.asarray([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
x_p = tf.placeholder(tf.int32,[2,2,3])
y = tf.reduce_sum(x_p,0) #修改这里
with tf.Session() as sess:
 y = sess.run(y,feed_dict={x_p:x})
 print y
axis= 0:[[ 8 10 12] [14 16 18]] 
1+7 2+8 3+7 …….. 
axis=1: [[ 5 7 9] [17 19 21]] 
1+4 2+5 3 +6 …. 
axis=2: [[ 6 15] [24 33]] 
1+2+3 4+5+6…..

关于“tf.reduce_sum tensorflow维度上操作的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


网站标题:tf.reduce_sumtensorflow维度上操作的示例分析-创新互联
网页URL:http://pwwzsj.com/article/phche.html