Pytorch遇到错误的解决方法
Pytorch遇到错误的解决方法,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
创新互联成立与2013年,先为砚山等服务建站,砚山等地企业,进行企业商务咨询服务。为砚山企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
pytorch运行错误:RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR
解决方法:
代码中添加:
torch.cuda.set_device(0)
训练RNN网络loss出现Nan解决办法
(1). 梯度爆炸的原因可以通过梯度裁决解决
GRAD_CLIP = 5loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), GRAD_CLIP)optimizer.step()
(2)testModel和evaluate中需要使用
with torch.no_grad():
(3) 学习率调小一点
RuntimeError: Expected object of device type cuda but got device type cpu for argument #1 'self' in call to _th_addmm
在代码中由三个位置需要进行cuda()转换:
模型是否放到了CUDA上
model = model.to(device)
输入数据是否放到了CUDA上
data = data.to(device)
模型内部新建的张量是否放到了CUDA上
p = torch.tensor([1]).to(device)
关于第一条中model = model.to(device)只对model中实例化在__init__()中的函数有效,如果在forward中实例化并直接使用则不会将model放置到cuda中。
下面给出一个错误的代码:
import torch import torch.nn as nn data = torch.rand(1, 10).cuda() class TestMoule(nn.Module): def __init__(self): super(TestMoule, self).__init__() # self.linear = torch.nn.Linear(10, 2) def forward(self, x): # return self.linear(x) return torch.nn.Linear(10, 2)(x) model = TestMoule() model = model.cuda() print(model(data))
RuntimeError: CUDA error: an illegal memory access was encountered
出现上面问题一种情况是某些nn模块下的函数传入了gpu类型的数据,如下错误代码:
import torch data = torch.randn(1, 10).cuda() layernorm = torch.nn.LayerNorm(10) # layernorm = torch.nn.LayerNorm(10).cuda() re_data = layernorm(data) print(re_data)
RuntimeError: CUDA error: device-side assert triggered
分类的类别target与模型输出softmax的值不是一一对应的,如三分类问题:
targets 为 1-3的值,但是softmax计算的值是0-2,因此提示上面的错误。
df = pd.read_csv('data/reviews.csv') def to_sentiment(score): score = int(score) if score <= 2: return 0 elif score == 3: return 1 else: return 2 df['sentiment'] = df.score.apply(to_sentiment)
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。
当前名称:Pytorch遇到错误的解决方法
转载来源:http://pwwzsj.com/article/piijee.html